Skip to content
  • (+30) 6980408243
  • tolaso@tolaso.com.gr
Welcome: Hope you enjoy your time here!

Joy of Mathematics

A site of university mathematics

  • Home
  • Privacy Policy
  • History
  • Login
  • JoM suggests …
  • Register
  • Publications

Fibonacci series

February 3, 2023 Tolaso

Let \mathcal{F}_n denote the n – th Fibonacci number. Prove that:

  1. \displaystyle \sum_{n=0}^{\infty} \frac{1}{\mathcal{F}_{2n+1} + 1} = \frac{\sqrt{5}}{2}.
  2. \displaystyle \sum_{n=1}^{\infty} \frac{\mathcal{F}_{2n+1}}{\mathcal{F}^2_{2n+1}-1} = 1.
  3. \displaystyle \sum_{n=1}^{\infty} \frac{1}{\mathcal{F}_{2n+1}-1} = \frac{5 - \sqrt{5}}{2}.

Solution

  1. Taking partial sums we see that the series telescopes:

        \begin{align*} \sum_{n=0}^N\frac{1}{1+\mathcal{F}_{2n+1}}&= \sum_{n=0}^N\frac{1}{1+\frac{\varphi^{2n+1}+\varphi^{-(2n+1)}}{\sqrt{5}}} \\ &= \sqrt{5} \sum_{n=0}^{N}\frac{\varphi^{2n+1}}{\varphi^{2(2n+1)}+\sqrt{5}\varphi^{2n+1}+1} \\ &=\sqrt{5} \sum_{n=0}^{N}\frac{\varphi^{2n+1}}{(\varphi^{2n+1}+\varphi)\left( \varphi^{2n+1}+\frac{1}{\varphi}\right)}\\ &= \sqrt{5} \sum_{n=0}^{N}\frac{\varphi^{2n+1}}{(\varphi^{2n}+1)\left( \varphi^{2n+2}+1\right)} \\ &= \frac{\varphi\sqrt{5}}{1-\varphi^2}\sum_{n=0}^N\left(\frac{\varphi^{2n}}{1+\varphi^{2n}}-\frac{\varphi^{2n+2}}{1+\varphi^{2n+2}} \right) \\ &=\sqrt{5}\left(\frac{\varphi^{2N+2}}{1+\varphi^{2N+2}} -\frac{1}{2}\right) \end{align*}

  2. Using Cassini’s identity we note that:

        \begin{align*} \sum_{n=1}^{\infty} \frac{\mathcal{F}_{2n+1}}{\mathcal{F}^2_{2n+1} - 1} &= \sum_{n=1}^{\infty} \frac{\mathcal{F}_{2n+1}}{\mathcal{F}_{2n} \mathcal{F}_{2n+2}} \\ &= \sum_{n=1}^{\infty} \frac{\mathcal{F}_{2n+2} - \mathcal{F}_{2n}}{\mathcal{F}_{2n} \mathcal{F}_{2n+2}} \\ &= \sum_{n=1}^{\infty} \left ( \frac{1}{\mathcal{F}_{2n}} - \frac{1}{\mathcal{F}_{2n+2}} \right )\\ &= \frac{1}{\mathcal{F}_{2}} \\ &= 1 \end{align*}

  3. Combining the previous results we have successively:

        \begin{align*} 1 &= \sum_{n=1}^{\infty} \frac{\mathcal{F}_{2n+1}}{\mathcal{F}^2_{2n+1} - 1} \\ &= \sum_{n=1}^{\infty} \frac{\mathcal{F}_{2n+1}}{\left ( \mathcal{F}_{2n+1} - 1 \right ) \left ( \mathcal{F}_{2n+1} + 1 \right )} \\ &= \sum_{n=1}^{\infty} \frac{\mathcal{F}_{2n+1} - 1 + 1}{\left ( \mathcal{F}_{2n+1} - 1 \right ) \left ( \mathcal{F}_{2n+1} + 1 \right )} \\ &= \frac{1}{2} \left ( \sum_{n=1}^{\infty} \frac{1}{\mathcal{F}_{2n+1} - 1} + \sum_{n=1}^{\infty} \frac{1}{\mathcal{F}_{2n+1} + 1} \right ) \end{align*}

    The result follows.

Read more
Fibonacci, Real Analysis, SeriesLeave a comment

A telescopic (!) series

January 18, 2023January 18, 2023 Tolaso

Prove that

    \[\sum_{n=-\infty}^{\infty} \arctan \frac{\sinh 1}{\cosh 2n} = \frac{\pi}{2}\]

Solution

We have successively:

    \begin{align*} \sum_{n=-\infty}^{\infty} \arctan \frac{\sinh 1}{\cosh 2n} &= \arctan \sinh 1 + 2 \sum_{n=1}^{\infty} \arctan \frac{\sinh 1}{\cosh 2n} \\ &= \arctan \frac{e-e^{-1}}{2} + 2 \sum_{n=1}^{\infty}\arctan \frac{e-e^{-1}}{e^{2n} + e^{-2n}} \\ &= \arctan \frac{e - e^{-1}}{1 + e \cdot e^{-1}} + 2 \sum_{n=1}^{\infty} \arctan \frac{e^{-(2n-1) - e^{-(2n+1)}}}{1 + e^{-4n}} \\ &= \arctan \frac{e - e^{-1}}{1 + e \cdot e^{-1}} + 2 \sum_{n=1}^{\infty} \arctan \frac{e^{-(2n-1) - e^{-(2n+1)}}}{1 + e^{-(2n-1)} e^{-(2n+1)}}\\ &= \left ( \arctan e - \arctan e^{-1} \right ) + \\ &\quad \quad \quad + 2 \sum_{n=1}^{\infty} \left ( \arctan e^{-(2n-1)} - \arctan e^{-(2n+1)} \right ) \\ &= \left ( \arctan e - \arctan e^{-1} \right ) + 2 \arctan e^{-1} \\ &= \arctan e + \arctan e^{-1} \\ &= \frac{\pi}{2} \end{align*}

Read more
Real Analysis, SeriesLeave a comment

Telescopic Fibonacci product

January 6, 2023 Tolaso

Let \mathcal{F}_n denote the Fibonacci sequence. Prove that

    \[\prod_{n=1}^{\infty} \frac{\mathcal{F}_{2n} \mathcal{F}_{2n+2} + \mathcal{F}_{2n-1} \mathcal{F}_{2n+2}}{\mathcal{F}_{2n} \mathcal{F}_{2n+2} + \mathcal{F}_{2n} \mathcal{F}_{2n+1}} = \sqrt{5}-1\]

Solution

Let P_N denote the partial product. Thus,

    \begin{align*} P_N &= \prod_{n=1}^{N} \frac{\mathcal{F}_{2n} \mathcal{F}_{2n+2} + \mathcal{F}_{2n-1} \mathcal{F}_{2n+2}}{\mathcal{F}_{2n} \mathcal{F}_{2n+2} + \mathcal{F}_{2n} \mathcal{F}_{2n+1}} \\ &=\prod_{n=1}^{N} \frac{\mathcal{F}_{2n+1} \mathcal{F}_{2n+2}}{\mathcal{F}_{2n} \mathcal{F}_{2n+3}} \\ &= \frac{\mathcal{F}_3 \mathcal{F}_4}{\mathcal{F}_2 \mathcal{F}_5} \cdot \frac{\mathcal{F}_5 \mathcal{F}_6}{\mathcal{F}_6 \mathcal{F}_7} \cdot \frac{\mathcal{F}_7 \mathcal{F}_8}{\mathcal{F}_6 \mathcal{F}_9} \cdots \frac{\mathcal{F}_{2N-1} \mathcal{F}_{2N}}{\mathcal{F}_{2N-2} \mathcal{F}_{2N+1}} \cdot \frac{\mathcal{F}_{2N+1} \mathcal{F}_{2N+2}}{\mathcal{F}_{2N} \mathcal{F}_{2N+3}} \\ &= \frac{\mathcal{F}_3}{\mathcal{F}_2} \cdot \frac{\mathcal{F}_{2N+2}}{\mathcal{F}_{2N+3}} \\ &= 2 \cdot \frac{\sqrt{5}-1}{2} \\ &= \sqrt{5}-1 \end{align*}

 

Read more
Fibonacci, Product, Real AnalysisLeave a comment

A complex inequality

January 5, 2023 Tolaso

Let z \in \mathbb{C} such that |z+1| \leq 1 and |z^2+1|\leq 1. Prove that |z|\leq 1.

Solution

We have successively:

    \begin{align*} \left | 2z \right | &= \left | \left ( z +1 \right )^2 - \left ( z^2+1 \right ) \right | \\ &\leq \left | z +1 \right |^2 + \left | z^2+1 \right | \\ &=1^2 + 1 \\ &=2 \end{align*}

Read more
GeneralLeave a comment

An exponential series

December 22, 2022December 22, 2022 Tolaso

Prove that

    \[\sum _{n=0}^{\infty} \frac {2^n}{3^{2^{n-1}} +1} = \frac{\sqrt{3}+1}{2}\]

Solution

We recall the product identity

    \[\prod_{n=0}^{\infty} \left ( 1 + q^{2^n} \right ) = \frac{1}{1-q} \quad , \quad \left | q \right | < 1\]

Thus,

    \begin{align*} \log \prod_{n=0}^{\infty} \left ( 1 + q^{2^n} \right ) = \log \frac{1}{1-q} &\Rightarrow \sum_{n=0}^{\infty} \log \left ( 1 + q^{2^n} \right )= -\log \left ( 1- q \right ) \\ &\Rightarrow \frac{\mathrm{d} }{\mathrm{d} q} \sum_{n=0}^{\infty} \log \left ( 1 + q^{2^n} \right ) = \frac{\mathrm{d} }{\mathrm{d} q} \left ( -\log (1-q) \right ) \\ &\Rightarrow \sum_{n=0}^{\infty} \frac{q^{2^n-1} 2^n}{q^{2^n}+1} = \frac{1}{1-q} \\ &\Rightarrow \sum_{n=0}^{\infty} \frac{q^{2^n}2^n}{q^{2^n}+1} = \frac{q}{1-q} \\ &\Rightarrow \sum_{n=0}^{\infty} \frac{2^n}{q^{-2^n} + 1} = \frac{q}{1-q} \\ &\!\!\!\!\!\!\!\!\!\!\overset{q=1/\sqrt{3}}{=\! =\! =\! =\! =\!\Rightarrow } \sum_{n=0}^{\infty} \frac{2^n}{3^{2^{n-1}} + 1} = \frac{\sqrt{3}+1}{2} \end{align*}

Read more
Real Analysis, Series1 Comment

Posts navigation

1 2 … 105 Next

General

History

Publications

JoM Suggests …

Get to know Tolaso

Get to know Tolasoland

 

Associated Sites

mathematica.gr

mathimatikoi.org

math.stackexchange.com

aops.com/community

Need hosting?

Visit Media Host today and launch your website!

Social Media

  • Tolaso Newtok
  • Tolaso J Kos
  • Tolaso J Kos
  • Contact Us
  • Paypal
Copyright © 2022 | Tolaso Network
Proudly powered by WordPress | Education Hub by WEN Themes