Home » Uncategorized » Multiple logarithmic integral

Multiple logarithmic integral

Prove that

    \[\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\mathrm{d}(x, y,z)}{ \ln x + \ln y + \ln z} = - \frac{1}{2}\]


First of all we observe that the integral \bigintsss_0^1 \frac{\mathrm{d}x}{\ln x} as well as the integral \bigintsss_0^1 \bigintsss_0^1 \frac{\mathrm{d}(x, y)}{\ln x + \ln y} diverge whereas the proposed integral converges which is an interesting fact. Now,

    \begin{align*} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\mathrm{d}(x, y, z)}{\ln x + \ln y + \ln z} &= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\mathrm{d}(x, y, z)}{\ln xyz} \\ &\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\overset{u=xyz \; , \; v=y \; , \; w=z}{=\! =\! =\! =\! =\! =\! =\! =\! =\!=\!=\!} \iiint \limits_{\mathbb{D}} \frac{\mathrm{d}(v, w, u)}{v w \ln u} \\ &=\int_{0}^{1} \int_{u}^{1} \int_{u/w}^{1} \frac{\mathrm{d}(v, w, u)}{v w \ln u} \\ &=-\frac{1}{2} \end{align*}

since \mathbb{D} is determined by the inequalities

    \[\frac{u}{w}\leq v\leq 1 \quad , \quad u\leq w\leq 1\quad ,\quad 0\leq u\leq 1\]

Read more

Leave a comment

Donate to Tolaso Network