Home » Uncategorized » Differential equation

Differential equation

Let f:(0, +\infty) \rightarrow \mathbb{R} be a twice differentiable function such that

    \[x^2 f''(x) + x f'(x) = x - 2 \quad \text{for all} \;\; x>0\]

If f(1) =0 , f'(1)=1 find an explicit formula of f.

Solution

We have successively

    \begin{align*} x^2 f''(x) + x f'(x) = x - 2 &\Rightarrow x f''(x) + f'(x) = 1 - \frac{2}{x} \\ &\Rightarrow \left ( x f'(x) \right )' = \left ( x - 2 \ln x \right )' \\ &\Rightarrow x f'(x) = x - 2 \ln x + c_1 \\ &\!\!\!\!\!\!\!\!\!\!\!\overset{x=1 \Rightarrow c_1=0}{=\! =\! =\!=\! =\! =\!\Rightarrow } x f'(x) = x - 2 \ln x \\ &\Rightarrow f'(x) = 1 - \frac{2 \ln x}{x} \\ &\Rightarrow \left ( f(x) \right ) ' = \left ( x - \ln^2 x \right )' \\ &\Rightarrow f(x) = x - \ln^2 x + c \\ &\!\!\!\!\!\!\!\!\!\!\!\overset{x=1 \Rightarrow c=-1}{=\! =\! =\!=\! =\! =\!\Rightarrow } f(x) = x - \ln^2 x - 1 \end{align*}

Read more

Leave a comment

Donate to Tolaso Network