Home » Uncategorized » An odd trigonometric integral

An odd trigonometric integral

Let n \in \mathbb{N}. Prove that

    \[\int_{0}^{\infty} \frac{\sin^{2n+1} y}{y}\, \mathrm{d}y = \frac{\pi}{2^{2n+1}} \binom{2n}{n}\]

Solution

Read More

Leave a comment

Donate to Tolaso Network