Evaluation of integral [MAA]

Let f be a continuous real valued function on (0, +\infty) satisfying the identity

\displaystyle f\left ( \frac{1}{x} \right ) = - f(x) \quad \text{forall} \; x \in (0, +\infty)

Evaluate the integral

\displaystyle \mathcal{J} = \int_{\sqrt{2}-1}^{\sqrt{2}+1} \frac{{\rm d}x}{\left ( 1+x^2 \right ) \left ( 1+a^{f(x)} \right )}

(D.M.Batinetu-Giurgiu , George Emil Palade)

Solution

Read more

One thought on “Evaluation of integral [MAA]”

Leave a Reply