A convergent series

Let f be holomorphic on the open unit disk \mathbb{D} and suppose that the integral \displaystyle \iint \limits_{\mathbb{D}} \left| f(z) \right|^2 \, {\rm d}(x, y) converges. If the Taylor expansion of f is of the form \sum \limits_{n=0}^{\infty} a_n z^n then prove that the sum

    \[\mathcal{S}= \sum_{n=0}^{\infty} \frac{|a_n|^2}{n+1}\]

converges.

Solution

Read more

Leave a Reply