A sum on Beatty’s theorem

Let \alpha, \beta be positive irrational numbers such that \displaystyle \frac{1}{\alpha} + \frac{1}{\beta}=1. Evaluate the (pseudo) sum:

    \[\sum_{n=1}^{\infty} \left(\frac{1}{\lfloor n\alpha\rfloor^2}+\frac{1}{\lfloor n\beta\rfloor^2}\right)\]

Solution

Read more

Leave a Reply