Sum of reciprocal sequence

Let \{a_n\}_{n \in \mathbb{N}} be a sequence such that a_1=3 and

    \[a_{n+1} = a^2_{n}-2  \quad \text{forall} \;\; n \geq 2\]

Evaluate the sum

    \[\mathcal{S}  = \sum_{n=1}^{\infty} \prod_{k=1}^{n} \frac{1}{a_k}\]

Solution

Read more

Limit of a sequence

Let f:\mathbb{R}\rightarrow \mathbb{R} be a function such that f(0)=0 and f is differentiable at 0. Let us set

    \[a_n =\sum_{k=1}^{n} f \left( \frac{k}{n^2} \right)\]

Evaluate the limit \lim \limits_{n \rightarrow +\infty} a_n.

Solution

Read more

Limit of a sum

Let a_n be a real sequence such that a_n>0 , \liminf a_n=1 , \limsup a_n =2 and \lim \limits_{n \rightarrow +\infty} \sqrt[n] {\prod \limits_{k=1}^n{a_k}}=1. Prove that

    \[\lim_{n \rightarrow +\infty} \frac{1}{n} \sum_{k=1}^{n} a_k =1\]

Solution

Read more