On the centralizer

Suppose that A \in \mathcal{M}_n(\mathbb{C}) has this property that if \lambda is an eigenvalue of A then -\lambda is not an eigenvalue of A. Show that AX=XA if and only if A^2X=XA^2 for any X \in \mathcal{M}_n(\mathbb{C}). In other words the centralizer of A equals the centralizer of A^2.

Solution

Read more

 

Isomorphic groups

Let n>2 . Define the group

    \[\mathcal{Q}_{2^n} = \langle x, y \mid x^2=y^{2^{n-2}} , y^{2^{n-1}} = 1, x^{-1} yx =y^{-1} \rangle\]

Prove that \displaystyle \mathcal{Q}_{2^n} / \mathcal{Z} \left ( \mathcal{Q}_{2^n} \right ) \simeq \mathcal{D}_{2^{n-1}} where \mathcal{D} is the dihedral group.

Solution

Read more

 

Irreducible factors of a polynomial

Let n \geq 1 and let

    \[p_n(x)=x^{2^n}+x^{2^{n-1}}+1 \in \mathbb{Z}[x]\]

Find all irreducible factors of p_n(x).

Solution

Read more