Logarithmic – Trigonometric integral

Let \gamma denote Euler – Mascheroni’s constant. Prove that

    \[\int_{0}^{\infty} \frac{\ln x \left ( 1 - \cos t \right )}{t^2} \, \mathrm{d}t = \frac{\pi}{2} \left ( 1 - \gamma \right )\]

Solution

Read more