Generalized Riemann – Lebesgue

Let f , g:\mathbb{R} \rightarrow \mathbb{R} be 1 periodic and continuous functions. Prove that

\displaystyle \lim_{n \rightarrow +\infty} \int_{0}^{1} f(x) g(nx) \, {\rm d}x = \int_{0}^{1} f(x) \, {\rm d}x \int_{0}^{1} g(x) \, {\rm d}x

Solution

Read more

Leave a Reply